Background
The earlier control rod drive shaft (CRDS) unlatching tool design has served the needs of the nuclear industry well for many years; nevertheless, it became increasingly apparent that several tool features could be improved. For instance, a feature to prevent an operator from inadvertently dropping a CRDS while using the tool was needed. In addition, the need for frequent replacement of underwater air cylinders on the tool was a maintenance issue that needed to be addressed.

Description
The new latch mechanism on the mechanical CRDS unlatching tool prevents operators from inadvertently dropping the CRDS during latching, unlatching or drive shaft movement activities. Further improvements resolve the underwater air cylinder reliability issues. The fail-safe feature of the latch mechanism employs the weight of the tool and CRDS to keep the tool in a latched condition until the CRDS is resting on or in a supporting surface, such as the control rod hub or CRDS storage stand, and the latch pin is removed. Only then can the mechanism be used to unlatch the CRDS from the tool. In addition, the button cylinder has been relocated to the top of the tool where it is easily accessible for maintenance or adjustment. A further improvement in reliability is gained because the valve operating station is reduced from two valves to one.

Benefits
• As described, the mechanical CRDS unlatching tool significantly increases the likelihood that a CRDS will not be inadvertently dropped, resulting in costly repairs and/or replacement of plant components.
• A mechanical latch mechanism that replaces the earlier pneumatic design improves the reliability of the tool.
• A reduction of pneumatic components results in reduced maintenance.
Deliverables

- Mechanical CRDS unlatching tool
- Valve station and hoses
- Documentation package

Experience

While no operating experience exists, a training tool is available at the Westinghouse Waltz Mill Service Center facility in Madison, Pennsylvania (USA).

Also, the tool is the design basis for the AP1000® power plant fleet and is compatible with all Westinghouse nuclear plants equipped with standard drive shaft designs.

Production tools were delivered for the lead AP1000 power plant site with five additional tools in fabrication. Delivery lead-time is approximately six months.

Currently, the mechanical CRDS unlatching tool is protected by U.S. and international patents.