Select a topic from the dropdown below or use the search box to refine your results.

Advanced Plastics Processing Systems

The advanced plastics processing system (APPS) represents a new approach to plastics waste minimization in nuclear power plant waste treatment and in other areas where radioactive waste arises. Some customers currently sort plastics waste in sorting boxes, place it into compactable drums and then compact or supercompact it. Because compacted plastic has a deformation memory, “spring back” results after compaction, making it difficult to achieve optimal waste reduction. A Westinghouse APPS installation is based on proven techniques that are currently used in the plastics industry worldwide. Westinghouse innovates to enhance them for the nuclear application. Maximum waste reduction is achieved without changing the chemical composition of the plastics.

All Metal Filter Module (AMFM)

Background All metal filter modules (AMFM), developed by Dominion Engineering, Inc. (DEI) and offered by Westinghouse, were originally intended to collect large quantities of activated corrosion products liberated during ultrasonic fuel cleaning activities. While still in use for those applications, AMFMs are also now being installed as a cost-effective alternative to plastic filters for general filtration and vacuuming applications in the spent fuel pool and reactor cavity.

AMFM-B500 Filtration System

The AMFM-B500 filtration system, developed by Dominion Engineering, Inc. (DEI) and offered by Westinghouse, makes use of all metal filter modules (AMFM) for a variety of vacuuming and filtration activities in the spent fuel pool and reactor cavity

Cementation

If radioactive liquid or solid waste needs to be converted into a product suitable for final storage, cementation is one of the methods commonly used. Cement is readily available and inexpensive for use in solidifying liquid or wet solid waste, and also for encapsulating solid waste generated during operation of a power plant as decontamination and decommissioning waste and legacy waste. Using cement for immobilizing radioactive waste offers a wide range of possibilities for optimizing the properties of the final end product. Recipes for the end product can be tailor-made to suit particular waste streams – from the highest possible compression strength to the maximum amount of waste at a certain level strength – combined with low leachability.

Chamber Filtration

Removal of particles from liquid waste is one of the most important steps in liquid radioactive waste treatment to get rid of particle-bound activity and protect downstream processes. The Westinghouse chamber filtration system consists of a chamber filtration unit, a feed tank with pump, a permeate tank with pump, a filtration additive tank with pump and a reject system with a Westinghouse-design docking station for the drums. Chamber filtration can tolerate various solid concentrations and build up its own filter layer; therefore, it is particularly well suited for sludge and other similar fluid mixtures. Filter additives can be used, if necessary and no filter cartridge waste is created.

Decommissioning & Dismantling and Waste

Background Nuclear facilities that are no longer operating due to economic factors, licensing issues, end-of-life components or other reasons are candidates for decommissioning and dismantling (D&D), followed by site restoration.

Decontamination / Segmentation Boxes

Westinghouse decontamination and segmentation boxes are used to segment and decontaminate equipment, parts and other material that arise during operation and decommissioning of nuclear power plants or other nuclear facilities. The boxes are designed and developed to meet our customers’ specific needs regarding the capacity, plant layout, functional requirements, logistics, dose rate of material and degree of automation by focusing on as-low-as-reasonably-achievable principles.

Drum Capping

Drums that use a waste package with an elevated dose rate need to be capped automatically to avoid a dose rate exposure of workers. A Westinghouse-design drum capping system provides fully-automatic drum lid storage and fully-automatic capping of waste drums. The system can be installed in buildings, as part of a larger facility, and also in mobile systems.

Drum Dryers

Radioactive waste shall be without free liquid for storage or disposal to avoid chemical reactions and corrosion. A drum dryer removes moisture from solid waste, such as sludges. The drum dryer was especially developed for the conditioning of waste contained in drums, but also other special containers.

Drum Radiation Monitoring

Identifying the content of waste packages is an essential part of waste management activities to document the waste package parameters necessary to meet the storage or disposal requirements. Westinghouse provides a customizable drum radiation monitoring system for the non-destructive analysis of waste drums. We can provide a smooth integration of this system into a larger processing system.

Grouting System

Westinghouse uses treatment and conditioning processes to convert a wide variety of radioactive waste materials into forms that are suitable for their subsequent management— including transportation, storage and final disposal. The use of specially formulated grouts provides the means to immobilize radioactive material that is in various forms of filter cartridges, super-compacted pellets or in other forms of non-compactable radioactive waste.

Hot Resin Supercompaction

The Westinghouse Hot Resin Supercompaction (HRSC) process is applied for volume reduction of organic bead and/or powder resin. It was developed more than 20 years ago to address the specific waste characteristics of one nuclear power plant. The presence of both powder and bead resins was considered in developing the process to address the needs of both pressurized and boiling water reactors. The most critical issue for a successful process configuration is the duroplastic behavior of resins, in particular of the bead resins. This behavior prevents the resins from building a homogenous, solid block and, in the worst case, bursting the metal surface of the pellet, known as the spring-back effect. Various laboratory and full-scale trials had to be performed to adjust the process parameters to address this issue.

In-drum Dryer

Drying processes are used for volume reduction of liquid radioactive waste. The final product of this process is a solid waste product. The Westinghouse in-drum dryer dries liquid, non-combustible waste such as evaporator concentrates. During the drying process the solid content in the drum increases and precipitates while the liquid is evaporated and condensed subsequently. By falling below a certain drum filling level, liquid waste is automatically re-dosed. The drying process is complete once a certain condensate flow is no longer reached. The result is a quality dry product that can withstand long-term storage without chemical or biochemical reactions occurring over the subsequent storage period.

Mobile Supercompactor

Supercompaction is a proven and effective technology for volume reduction of nearly all the different kinds of solid radioactive waste such as metals, electronic parts, small equipment, piping, plastics, insulation material, filters, dried resin, sludge and asphalt. Westinghouse mobile supercompactors have been in worldwide operation since 1985. The supercompactor allows reliable and proven volume reduction as a mobile solution. The supercompactor provides customers with cost- effective, flexible and independent campaign planning and optimum space management on their sites, for both equipment and waste volume.

Supercompactor

Compaction is a viable treatment technology for volume reduction of various waste streams, including activated metals, glasses, contaminated solids, plastics, small equipment and tools, filters, compactable trash, wood, pipes, sludge and asphalt. Westinghouse-design supercompactors have been in operation since 1982 in the United States and in other countries.

Uranium Recovery

Westinghouse Electric Company continues to lead the way in the treatment of uranium-bearing residues, using several large-scale global facilities with a diverse range of capabilities to process hundreds of residue types. As a fuel manufacturer, Westinghouse has the ability to recycle uranium and return it to the fuel cycle.

Waste Treatment Overview

Treatment of radioactive waste into acceptable forms for storage or disposal is mandatory for waste producers. Waste from operating nuclear facilities and/or a decommissioning and decontamination (D&D) activity is produced in various forms (e.g., liquid, solid, gas) and thus requires different treatment to transfer it into acceptable waste forms.